Article ID Journal Published Year Pages File Type
1467874 Composites Part A: Applied Science and Manufacturing 2007 11 Pages PDF
Abstract

This paper presents a new concept for a lightweight hybrid-FRP bridge deck. The sandwich construction consists of three layers: a fiber-reinforced polymer composite (FRP) sheet with T-upstands for the tensile skin, lightweight concrete (LC) for the core and a thin layer of ultra high performance reinforced concrete (UHPFRC) as a compression skin. Mechanical tests on eight hybrid beams were performed with two types of LC and two types of FRP/LC interface: unbonded (only mechanical interlocking of LC between T-upstands) and bonded with an epoxy adhesive. The ultimate loads of the beams increased by 104% on average due to bonding. However, the beam failure mode changed from ductile to brittle. The beams using a LC of 44% higher density exhibited an 81% increase in the ultimate load. The manufacturing of the beams proved to be economic in that epoxy and concrete layers were rapidly and easily applied wet-in-wet without intermediate curing times. The experimental results showed positive results regarding the feasibility of the suggested hybrid bridge deck.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,