Article ID Journal Published Year Pages File Type
1468714 Corrosion Science 2014 12 Pages PDF
Abstract

•Electropolishing of 316L stainless steel increases its corrosion resistance.•New electropolishing electrolyte composition is suggested.•Larger thickness and chromium enrichment of the passive film is obtained.•Electropolishing improves the surface biocompatibility and hemocompatibility.

A 316L stainless steel (316L-SS) surface was electrochemically polished (EP) in an electrolyte of a new chemical composition at different cell voltages, with the aim of improving its corrosion resistance and biocompatibility. X-ray photoelectron spectroscopy results revealed that the EP-formed oxide films were characterized by a significantly higher atomic Cr/Fe ratio and film thickness, in comparison to the naturally-grown passive oxide film formed on the untreated (control) 316L-SS surface. As a result of the increase in the oxide film thickness and relative Cr enrichment, the EP-treated 316L-SS surfaces offered a notable improvement in general corrosion resistance and pitting potential. In addition, the attachment of endothelial cells (ECs) and smooth muscle cells (SMCs) to the 316L-SS surfaces revealed a positive effect of electropolishing on the preferential attachment of ECs, thus indicating that the EP surfaces could be endothelialized faster than the control (unmodified) 316L-SS surface. Furthermore, the EP surfaces showed a much lower degree of thrombogenicity in experiments with the platelet-rich plasma. Therefore, the use of the electrochemical polishing technique in treating a 316L-SS surface, under the conditions presented in this paper, indicates a significant improvement in the surface’s performance as an implant material.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,