Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1470556 | Corrosion Science | 2010 | 10 Pages |
Abstract
A discussion is proposed on the determination of the input values and the experimental validation of finite element modelling of the galvanic coupling in aluminium alloys by local probe techniques such as the Scanning Vibrating Electrode Technique (SVET) and the microcapillary electrochemical cell (microcell). Polarization curves obtained by the microcell were introduced as input conditions in the model based on Laplace or Nernst–Planck equation. SVET measurements were performed to determine the coupling current distribution on an Al/Al4%Cu bimetallic system. Agreement was found between simulated and experimental current distributions depending on the input conditions and the solved equation.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Nicolas Murer, Roland Oltra, Bruno Vuillemin, Olivier Néel,