Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1470909 | Corrosion Science | 2009 | 8 Pages |
Atmospheric corrosion and runoff of zinc were investigated during two years in humid tropical climate on hot dip galvanized steel and zinc samples. The high zinc mass loss (14.70 g m−2) is induced by the intensive zinc release (12.40 g m−2). No corrosion phase containing chloride was detected on the zinc surface, while a variety of sulfates not dissolved by rains reveals the sensitivity of zinc to SO2 pollutant. However, two chloride-containing corrosion products were detected on the galvanized steel. Exponential equation is proposed that fits well the experimental data for zinc mass loss induced by runoff process as a function of the time of wetness. The formula gives possibility to predict the mass loss even before a steady state in the corrosion process has been reached. This equation can converge to a Benarie lineal function (C = Atw), when the coefficient b = 1 for the corrosion which is accelerated with the partial removal of the corrosion layer during the runoff phenomena.