Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1471278 | Corrosion Science | 2008 | 9 Pages |
There is a growing trend in the automotive industry to reduce vehicles weight so as to increase fuel efficiency and therefore reduce CO2 emissions. For many automotive components such as springs, weight reduction is sought through an increase in the mechanical properties (allowing smaller components size).For ultra high strength springs, a good corrosion resistance becomes essential to avoid surface damage that will be detrimental to the corrosion-fatigue resistance. Corrosion-fatigue failures indeed often initiate on surface defects caused by corrosion in service (corrosion pits). Therefore, while of moderate importance in conventional spring steels, the corrosion resistance of ultra high strength spring steels is of primary importance.Fine changes in steel chemical composition can have an important effect on corrosion resistance. To understand the individual action of each element on the corrosion resistance of spring steels, corrosion products formed on samples exposed to NaCl environments were characterized using Raman spectroscopy, in a purposely designed experimental tool that allows mapping of corrosion products on the steel surface (by nature and mass fraction).Different steel grades were thus characterized after accelerated corrosion tests, and a clear correlation was established between weight loss and the nature of the corrosion products.