Article ID Journal Published Year Pages File Type
1471312 Corrosion Science 2008 11 Pages PDF
Abstract

The corrosion inhibition properties of tris(benzimidazole-2-ylmethyl)amine (TBMA) were analyzed by DFT and electrochemical techniques such as polarization curves and electrochemical impedance spectroscopy (EIS). DFT results clearly show that TBMA posses corrosion inhibition properties by having a delocalization region (N1C2N3) in the benzimidazole ring that gives up their π electron density through its HOMO orbital to the metal LUMO to form a adsorption layer over the metallic surface; this has been proved by interacting the TBMA and its protonated structures with the surface of Fe13 cluster, showing that the protonated moiety adsorbs strongly on the iron surface than that of the neutral structure. Electrochemical impedance data demonstrate that the interface between the electrode and the TBMA solution decreases the charge capacitance and simultaneously increases the function of the charge/discharge of the interface, facilitating the formation of adsorption layer over the iron surface.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,