Article ID Journal Published Year Pages File Type
1471685 Corrosion Science 2006 13 Pages PDF
Abstract

Slow displacement rate tensile tests were carried out in a saturated H2S solution to investigate the effect of hydrogen embrittlement on notched tensile strength (NTS) and fracture characteristics of two ultra-high strength steels (PH 13-8 Mo stainless steel and T-200 maraging steel). Hydrogen permeation properties were determined by an electrochemical permeation method. The results of permeation tests indicated that over-aged specimens showed a lower diffusivity/hydrogen flux and higher solubility than those solution-annealed. The great increase in reverted austenite (irreversible hydrogen traps) together with numerous precipitates at the expense of dislocations (reversible) in the over-aged specimen led to such a change in permeability. Ordinary tensile tests indicated that four tested specimens had roughly the same yield strength level. Hence, the hydrogen embrittlement susceptibility of the material could be related to their permeation properties. The uniform distribution of strong hydrogen traps in over-aged specimens instead of weak traps in the solution-annealed impeded the hydrogen transport toward the strained region, thus, the resistance to sulfide stress corrosion cracking was improved in over-aged specimens.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,