Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1471709 | Corrosion Science | 2006 | 15 Pages |
This paper concerns with the effect of nitrogen addition to 904 L stainless steel (SS) welds on their stress corrosion cracking (SCC) behavior in high temperature (288 °C) and high pressure (1050 psi) water of high oxygen content (100 ppb) and high conductivity (2.5 μS/cm). For this study, 316 L SS base plate TIG welded with 904 L SS filler wire and with nitrogen contents of 0.027, 0.058 and 0.095 wt.% were used. Flat pin-loaded tensile specimens were fabricated from transverse welds, with the weld in the gauge length. Slow strain rate tests (SSRT) were carried out at a strain rate of 2.2 × 10−6 s−1. The study shows that the samples, when tested in air, failed at the weld fusion zone for 0.027 and 0.058 wt.% N and at the base metal for 0.095 wt.% N. In the environment, the samples failed in the base metal except the one with least nitrogen content (0.027 wt.%). With nitrogen addition, as the failure location shifted to the base alloy, the weld seemed to acquire SCC resistance and became even more resistant than the base alloy.