Article ID Journal Published Year Pages File Type
1471823 Corrosion Science 2006 16 Pages PDF
Abstract

The effects of hydrogen on the passivity and pitting susceptibility of type 316L stainless steels have been investigated with alloys containing different nitrogen contents (0.015, 0.198 and 0.556 wt.% N). The study revealed that electrochemically pre-charged hydrogen significantly reduced the pitting resistance of alloys conatining 0.015 and 0.198 wt.% nitrogen contents. In alloy with highest nitrogen content (0.556 wt.% N), an increase in the passive film current density with hydrogen was observed without affecting breakdown potential. Auger electron spectroscopy (AES) analysis of the passive film indicated the presence of nitrogen in the passive film. On other hand, for hydrogen charged samples, nitrogen was found to be significantly less in the passive film. In Electrochemical impedance spectroscopy (EIS) measurement, the decrease in semi-circle radius of Nyquist plot, and the polarization resistance, RP associated with the resistance of the passive film was observed with hydrogen, indicating that hydrogen decreased the stability of the passive film. The present investigation indicated that precharged hydrogen deteriorated the passive film stability and pitting corrosion resistance in these alloys, and the increase in nitrogen content of the alloy offsets the deleterious effect of precharged hydrogen.

Keywords
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,