Article ID Journal Published Year Pages File Type
1472049 Corrosion Science 2007 11 Pages PDF
Abstract
The oxidation of a quaternary Cu-Ni-Cr-Fe alloy containing approximately 20 at.% Ni, 20 at.% Cr and 5 at.% Fe, balance Cu (Cu-20Ni-20Cr-5Fe), was studied at 700-900 °C in 1 atm of pure oxygen. The alloy is composed of a mixture of three phases, where the lightest α phase with the largest Cu content forms the matrix, while the other two, much richer in Cr, form a dispersion of isolated particles. At variance with the ternary three-phase Cu-20Ni-20Cr alloy examined previously, which was unable to form protective chromia scales over the alloy surface even after an extended period of oxidation, the present alloy formed complex external scales containing mixtures of the oxides of the various components plus a deep internal region containing a mixture of alloy and oxide phases. With time, a very irregular and thin but essentially continuous chromia layer formed at the bottom of the mixed internal oxidation region, producing a gradual decrease of the oxidation rate. Thus, the addition of 5 at.% Fe to Cu-20Ni-20Cr alloy is able to decrease the critical Cr content required to form the most stable oxide and promotes the formation of a continuous chromia scale under a lower Cr content in spite of the simultaneous presence of three different phases.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,