Article ID Journal Published Year Pages File Type
1472275 Corrosion Science 2006 14 Pages PDF
Abstract

Pit-to-crack transition experiments were conducted on two thicknesses of 2024-T3 aluminum alloy. Specimens were corroded using a 15:1 ratio of 3.5% sodium chloride solution and hydrogen peroxide prior to fatigue loading. Cracks originating from corrosion pits were visually investigated using various microscopy techniques in order to gain insight into the pit-to-crack transition process.All pre-corroded specimens in this study fractured from cracks associated with pitting. Pit-to-crack transition was successfully observed using digital video techniques. The more aggressively corroded 2024-T3-4.064 mm specimens experienced more of an overall fatigue life reduction than 2024-T3-1.600 mm specimens. Results indicated that quantities such as pit surface area and surrounding pit proximity are as important as pit depth in determining when and where a crack will form.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, ,