Article ID Journal Published Year Pages File Type
1472743 Corrosion Science 2017 14 Pages PDF
Abstract
High strength steels used in prestressing concrete structures are not exempt from the effects induced by corrosion on the normal concrete reinforcement. Carbonation of surrounding concrete or mortar is not unlikely for prestressing tendons and strands. Moreover, these steels undergo to brittle fracture as a consequence of stress corrosion cracking phenomena. To evaluate if concrete carbonation can promote this kind of failure, constant load tests in bicarbonate aqueous solutions under anodic polarization were carried out on high strength steel wires. Microscopic examination pointed out that the wires exhibited a brittle fracture mode, while its natural feature is ductile, as indicated by air testing. Failure mechanism was evaluated by a fracture mechanic approach. Cracks initiation was attributed to an anodic dissolution mechanism, while its propagation, interpreted by means of the surface mobility theory, was related to interaction between hydrogen atoms and magnetite at a crack tip.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, ,