Article ID Journal Published Year Pages File Type
1473275 Journal of Asian Ceramic Societies 2015 9 Pages PDF
Abstract

Corundum-type Ti2O3 has been investigated over the last half century because it shows unusual insulator–metal (I-M) transition over a broad temperature range (420–550 K). In this work, we successfully synthesized Ti2O3 nanoparticles (20, 70, 300 nm in size) by the low-temperature reduction between precursors of rutile-type TiO2 and the reductant CaH2, in a non-topotactic manner. The reaction time required for obtaining the reduced phase increases with increasing the particle size. Synchrotron X-ray powder diffraction and electron microscopy studies reveal that the symmetry of all the present samples remains the same as that of bulk samples. However, the particle-size reduction results in three important features compared with bulk samples as follows, (i) color shift from dark brown to bluish black, (ii) anisotropic volume contraction involving the shrinkage of Ti–Ti bonds in the ab plane and along the c axis, (iii) reduction of the I-M transition temperature from 420 K to 350 K. These suggest that the a1g band broadening caused by the surface strain effects, which favors narrowing of the band gap, may play a critical role in the suppression of IM transition.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,