Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1473881 | Journal of the European Ceramic Society | 2014 | 11 Pages |
ZrB2 powder was coated with 5% ZrOC sol–gel precursor and sintered by SPS. Relative densities >98% were achieved at 1800 °C with minimal grain growth and an intergranular phase of ZrC. Carbon content in the precursor determined the type of reinforcing phase and porosity of the sintered composites. XRD, SEM and EDS studies indicated that carbon deficiency resulted in ZrO2 retention, improving ZrB2 densification with oxide particle reinforcement. Excess carbon resulted in ZrC formation as the reinforcing phase, but could yield porosity and residual carbon at grain boundaries. These two types of ZrB2 composites displayed different densification and microstructural evolution that explain their contrasting properties. In the extreme oxidative environment of oxyacetylene ablation, the composites with ZrC-C maintained superior leading edge geometry; whereas for mechanical strength, a bias towards the residual ZrO2 content was beneficial. This highlighted the sensitivity of processing carbon-precursors in the initial sol–gel process and the carbon content in ZrB2-based composite systems.