Article ID Journal Published Year Pages File Type
1474229 Journal of the European Ceramic Society 2011 9 Pages PDF
Abstract

In this study, (1 − x)BiFeO3–(x)PbTiO3 multiferroic ceramics, with x = 0, 0.1, 0.2, 0.25, 0.3 and 0.4, were processed through high-energy ball milling followed by reactive sintering in air atmosphere. The optimization of the procedure for the preparation of highly-dense (1 − x)BiFeO3–(x)PbTiO3 ceramics was carefully investigated and structural/microstructural effects on ferroic properties were carefully addressed. Shrinkage dilatometric measurements revealed an expansion related to a sintering reaction that has occurred before densification. This sintering behaviour was highly PbTiO3 concentration-dependent. The sintering mechanism was found to be directly related with the aliovalent substitution of Pb and Ti ions on A and B sites of the perovskite structure. The obtained ceramics were confirmed as ferroelectric ordered in ferroelectric characterizations. Remnant polarizations and coercive fields greatly dependent on grain size distribution and aliovalent substitutions were revealed. The magnetic hysteresis displayed a weak-ferromagnetic behaviour in all studied samples.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,