Article ID Journal Published Year Pages File Type
1474302 Journal of the European Ceramic Society 2014 6 Pages PDF
Abstract

A colloidal sol–gel route was used for the synthesis of nanoparticulate TiO2 and Ln3+-doped TiO2 sols (Ln = Eu or Er; contents of 1, 2, or 3 mol.%), from which the corresponding functional nanocrystalline thin films were subsequently obtained by the dip-coating method. It was found that the as-synthesized sols are not entirely suitable for the preparation of homogeneous thin films due to the water's high surface tension, a problem that is however solved by diluting the sols in ethanol. Appropriate dilution conditions were then determined, and the effect of this dilution on the sol viscosity identified. Finally, the phase composition in the as-deposited condition and the thermal stability of the dip-coated thin films were investigated by X-ray thermodiffractometry up to 1000 °C. It was found that the as-deposited thin films are homogenous and formed by the desired anatase nanoparticles, which eventually start to transform into rutile particles at high temperature. However, no precipitation of titanates occurs in the temperature range investigated. Also, it was observed that increasing the Ln3+ content improves the thermal stability of these anatase nanocrystalline thin films, an effect that is, if any, slightly more marked for Eu3+ than for Er3+.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,