Article ID Journal Published Year Pages File Type
1474386 Journal of the European Ceramic Society 2014 9 Pages PDF
Abstract

Diamond/SiC/(Si) composites were fabricated by Si vapor vacuum reactive infiltration. The coefficient of thermal expansion (CTE) of composites have been measured from 50 to 400 °C. With the diamond content increasing, CTE of composite decreased, simultaneously, the microstructure of the composites changed from core–shell particles embedded in the Si matrix to an interpenetrating network with the matrix. The CTEs of composites versus temperature matched well with those of Si. The Kerner model was modified according to the structural features of the composites, which exhibited more accurate predictions due to considering the core–shell structure of the composites. The thermal expansion behavior of the matrix was constrained by diamond/SiC network during heating.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , ,