Article ID Journal Published Year Pages File Type
1474432 Journal of the European Ceramic Society 2014 13 Pages PDF
Abstract

The transition from blunt leading edges to sharp leading edges on re-entry aircrafts is necessary to increase both maneuverability and safety. However, the oxidation resistance of current materials is inadequate for the extreme conditions experienced by sharp leading edge re-entry vehicles. The Mo–Si–B alloy system has been utilized to design a multilayer coating that has the ability to protect from 800 to 1700 °C. Substrates of Mo and ZrB2–50 vol% SiC with a flat profile were coated with the Mo–Si–B based coating and evaluated using arc jet testing performed at NASA Langley Research Center. Heat fluxes of 2.5 to nearly 3.5 MW/m2 and surface temperatures of 1500–1650 °C were achieved during the 20-min tests. The samples presented in this study showed <3% mass loss and retention of sample shape and integrity, demonstrating the robust environmental protection under a simulated hypersonic environment offered by the Mo–Si–B based coating on refractory metals and ceramics.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,