Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1474521 | Journal of the European Ceramic Society | 2011 | 10 Pages |
A commercially available solid silicone resin was dissolved in a solvent and emulsified via stirring in the presence of water and surfactant to form three different types of emulsions, namely water-in-oil (w/o), water-in-oil-in-water (w/o/w) and oil-in-water (o/w), by following different preparation procedures. After curing, thermosets possessing different morphologies, ranging from highly porous (monolithic) foams to porous micro-beads and solid micro-beads, formed. The samples kept their shape upon pyrolysis, and resulted in ceramic foams (via w/o) and porous micron sized (∼200 μm) spherical particles (via w/o/w) having more than 80 vol% of total porosity, while with o/w emulsification solid SiOC ceramic particles with an average diameter of ∼100 μm formed. Both surfactant and water altered the IR spectra for emulsion-derived thermoset samples, in comparison to the pure cured resin, but upon pyrolysis similar amorphous ceramics were obtained from all samples.