Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1474542 | Journal of the European Ceramic Society | 2012 | 9 Pages |
TaC/SiC composites with 20 vol.% SiC addition were densified by spark plasma sintering at 1600–1900 °C for 5 min under 40 MPa. Effects of sintering temperatures on the densification, microstructures and mechanical properties of composites were investigated. The results showed the materials achieved >98% of theoretical density at a temperature as low as 1600 °C. While the TaC grains grew slightly with the sintering temperature increasing, the SiC particles in materials decreased in size. Equiaxed to elongated grain morphology transformation was observed in the SiC phase in the 1900 °C material to obtain a higher flexural strength and fracture toughness of 715 MPa and 6.7 MPa m1/2, respectively. Lattice enlargement of the TaC phase in the 1900 °C material suggested possible Si diffusion into TaC grains. Ta was also detected in SiC grains by energy dispersive spectroscopy. Glassy pockets present at multi-grain junctions explained the enhanced densification.