Article ID Journal Published Year Pages File Type
1474604 Journal of the European Ceramic Society 2012 13 Pages PDF
Abstract

Residual strength (room temperature strength after exposure in air at high temperatures) of hot pressed ZrB2–SiC composites was evaluated as function of SiC contents (10–30 vol%) as well as exposure temperatures for 5 h (1000–1700 °C). Multilayer oxide scale structures were found after exposures. The composition and thickness of these multilayered oxide scale structure was dependent on exposure temperature and SiC contents in composites. After exposure to 1000 °C for 5 h, the residual strength of ZrB2–SiC composites improved by nearly 60% compared to the as-hot pressed composites with 20 and 30 vol% SiC. On the other hand, the residual strength of these composites remained unchanged after 1500 °C for 5 h. A drastic degradation in residual strength was observed in composites with 20 and 30 vol% SiC after exposure to 1700 °C for 5 h in ZrB2–SiC. An attempt was made to correlate the microstructural changes and oxide scales with residual strength with respect to variation in SiC content and temperature of expsoure.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,