Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1474842 | Journal of the European Ceramic Society | 2012 | 6 Pages |
Abstract
The effect was investigated of the intergranular phase chemistry on the sliding-wear resistance of pressureless liquid-phase-sintered (PLPS) α-SiC densified with 10 vol.% 5Al2O3 + 3RE2O3 (RE = La, Nd, or Yb) additives. It was found that the sliding-wear behaviour of these ceramics is similar to what is observed in other polycrystalline ceramics: initial mild, plasticity-controlled wear followed by severe, fracture-controlled wear, with a well-defined wear transition. Most importantly, the sliding-wear resistance of PLPS SiC is found to increase with decreasing size of the RE3+ cation in the rare-earth oxide additive, with a lower susceptibility to mild and severe wear and a delayed transition to severe wear. Underlying this effect is likely the hardening of the intergranular phase resulting from the increase in the field strength of the RE3+-O2â bonds as the size of the RE3+ cation decreases. Tailoring the intergranular phase chemistry via the selection of RE2O3 sintering additives with cations as small as possible thus emerges as a potentially interesting approach to improving the sliding-wear resistance of PLPS SiC ceramics.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
E. Ciudad, O. Borrero-López, F. RodrÃguez-Rojas, A.L. Ortiz, F. Guiberteau,