Article ID Journal Published Year Pages File Type
1474917 Journal of the European Ceramic Society 2010 12 Pages PDF
Abstract

Lattice diffusion coefficients Dl and grain boundary diffusion Dgb coefficients of hafnium were studied for 0.5 and 1 mol% cation-doped yttria-stabilized tetragonal zirconia at the temperature range from 1283 to 1510 °C. The diffusion profiles were determined by two experimental techniques: secondary ion mass spectroscopy and electron microprobe analysis. Additionally the first principle calculations of the electronic states of Zr4+, dopant cations and O2− anions and elastic properties in 3Y-TZP were performed. Superplastic strain rate versus stress and inverse temperature was also measured. For 1 mol% doped samples the significant increase of the grain boundary diffusion and superplastic strain rate was observed. Correlations between the calculated ionic net charges and Dgb indicate that enhancement of Dgb was caused by the reduction of ionic bonding strength between metal cation and oxygen anion in zirconia. The new constitutive equation for superplastic flow of yttria-stabilized tetragonal zirconia ceramics was obtained.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,