Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1475017 | Journal of the European Ceramic Society | 2010 | 6 Pages |
Abstract
Cerium-doped yttrium aluminum garnet (YAG:Ce3+) powder phosphor is synthesized via spray pyrolysis of polymeric precursor solution obtained by dissolving the corresponding nitrates in ethylenediaminetetraacetic acid (EDTA). Ultrasonically generated aerosol droplets are decomposed at 600 °C in argon atmosphere. Following the initial attempt in providing pure YAG:Ce3+ phase generation the particles were additionally thermally treated for 3 h in air at 1000 and 1100 °C. The powder morphology is followed with scanning electron microscopy (SEM), while inner particle structure is analysed by analytical and high-resolution transmission electron microscopy (TEM). Phase identification is performed by X-ray powder diffraction (XRPD) based on which a structural refinement through Rietveld method was done. The spherical submicronic particles have grained sub-structure comprising clustered garnet monocrystals sized below 100 nm. The YAG:Ce3+ emission shows wide peak in the range 470-600 nm with the maximum near 520 nm.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
L. Mancic, K. Marinkovic, B.A. Marinkovic, M. Dramicanin, O. Milosevic,