Article ID Journal Published Year Pages File Type
1475526 Journal of the European Ceramic Society 2013 11 Pages PDF
Abstract

The electrical, thermal, and mechanical properties as well as the effect of the temperature of large-scale Ti2AlC bulk synthesized by self-propagating high temperature combustion synthesis with pseudo hot isostatic pressing were investigated in detail. With increasing temperature, the lattice defects contribute to the decreasing phonon thermal conductivity, and the electrical resistivity increases linearly from room temperature (RT) to 900 °C. The RT flexural strength, compressive strength, fracture toughness, work of fracture, and Vickers hardness were measured to be 606 ± 20 MPa, 1057 ± 84 MPa, 6.9 ± 0.2 MPa m1/2, 158 ± 12 J/m2, and 4.7 ± 0.2 GPa, respectively. With increasing temperature, the flexural and compressive strengths both keep almost unchanged in the zone of brittle failure, but decrease sharply as the plastic deformation occurs. The brittle-plastic transition temperature under flexure (900–950 °C) is higher than compression (700–800 °C). Interestingly, a non-catastrophic failure is observed in the SENB test, with the high work of fracture (158 ± 12 J/m2).

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , ,