Article ID Journal Published Year Pages File Type
1475665 Journal of the European Ceramic Society 2012 7 Pages PDF
Abstract

The microstructural change in composite of nickel oxide and scandia-stabilized zirconia (NiO-ScSZ) under a reducing atmosphere was observed by scanning electron microscopy (SEM). The morphological transformation was noticeable after high-temperature treatment with the formation of two peculiar microstructures; i.e., fibrous zirconia and metallic nickel with wrinkled surface. It was suggested that partial reduction of the nickel species dissolved in ScSZ lattice triggered the formation of these characteristic morphologies. The growth of fibrous zirconia appeared to be promoted via interfacial reaction between the metallic Ni particles and the zirconia phase. The agglomeration of metallic nickel proceeded by the reduction at high temperatures and then the surface was transformed to the wrinkled morphology. The unique wrinkled pattern was often observed for the large agglomerated nickel particles. This drastic change in Ni-ScSZ microstructure upon the high-temperature reduction degraded the electrochemical performance of solid oxide fuel cells.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,