Article ID Journal Published Year Pages File Type
1475877 Journal of the European Ceramic Society 2011 9 Pages PDF
Abstract

Doped nanocrystalline ZnO powders in the size range between 15 and 250 nm were synthesized by chemical combustion method. The powders were characterized for their physical, structural and chemical properties by BET, X-ray diffraction, FESEM, TEM and XPS. These powders were consolidated into dense varistors discs by compaction, sintering and evaluated for their I–V characteristics. Post-calcinations of these powders were found to have great influence on the green density and sinterability. The formations of phases after sintering were confirmed by XRD analysis and EDX. The varistor properties have been studied for different calcination temperatures and compositions. Breakdown voltage as high as 9.5 kV/cm and coefficient of nonlinearity 134 were obtained. Leakage current density was found to be ∼1.29 μA/cm2 for a specific composition and condition. These studies demonstrate the feasibility of one step synthesis of doped ZnO nanopowder and their consolidation into ZnO fine grain varistor exhibiting improved performance.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,