Article ID Journal Published Year Pages File Type
1476159 Journal of the European Ceramic Society 2012 10 Pages PDF
Abstract

Polymer-derived ceramics exhibit a convenient route for the processing of low-dimensional ceramics like coatings or fibres. In previous investigations unfilled and composite coatings have been developed using ammonolysed bis(dichloromethylsilyl)ethane (ABSE) or perhydropolysilazane (PHPS) as precursors and BN, ZrO2 or glass particles as filler materials. The coating systems provide excellent corrosion and oxidation resistance to underlying metals. This paper reports on the effect of the precursor system and the pyrolysis parameters on the conversion behaviour, shrinkage and mechanical properties, including hardness and Young's modulus, of ABSE- and PHPS-based coatings. Therefore the crosslinking and pyrolysis behaviour as well as the mechanical properties of the coatings were investigated up to pyrolysis temperatures of 1000 °C in nitrogen and in air by ATR-IR, SEM, profilometry and nanoindentation measurements. The coatings pyrolysed at 1000 °C in nitrogen, have hardness values of 13 GPa and Young's moduli up to 155 GPa.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,