Article ID Journal Published Year Pages File Type
1476251 Journal of the European Ceramic Society 2010 8 Pages PDF
Abstract

The previously reported model that accounts for the formation of the core-rim structure in reaction-bonded boron carbide composites (RBBC) is expanded and validated by additional experimental observations and by a thermodynamic analysis of the ternary B–C–Si system. The microstructure of the RBBC composites consists of boron carbide particles with a core-rim structure, β-SiC and some residual silicon. The SiC carbide particles have a polygonal shape in composites fabricated in the presence of free carbon, in contrast to the plate-like morphology when the initial boron carbide is the sole source of carbon. In the course of the infiltration process, the original B4C particles dissolve partly or fully in molten silicon, and a local equilibrium is established between boron carbide, molten silicon and SiC. Overall equilibrium in the system is achieved as a result of the precipitation of the ternary boron carbide phase B12(B,C,Si)3 at the surface of the original boron carbide particles and leads to the formation of the rim regions. This feature is well accounted for by the “stoichiometric saturation” approach, which takes into account the congruent dissolution of B4C particles. The SiC phase, which precipitates form the silicon melt adopts the β-allotropic structure and grows preferably as single plate-like particles with an {1 1 1}β habit plane. The morphology of the SiC particles is determined by the amount of carbon available for their formation.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,