Article ID Journal Published Year Pages File Type
1476266 Journal of the European Ceramic Society 2011 13 Pages PDF
Abstract

This research describes the preparation, characterisation and in vitro behavior of a bioactive glass ceramic containing 44.8 wt% apatite, 28.0 wt% wollastonite-2 M and 27.2 wt% of amorphous phase. The biomaterial was obtained by a specific thermal cycle process that caused the devitrification of the Ca3(PO4)2–CaSiO3 binary system's stoichiometric eutectic composition. Overall, the material combines the properties of a resorbable Si–Ca-rich glass, in addition to bioactive properties of wollastonite and apatite phases. The bioactivity of this material was studied by soaking the samples in a simulated body fluid (SFB) for 3, 7, 14 and 21 days at 36.5 °C. During the soaking, the amorphous phase and also wollastonite-2 M phase underwent steady dissolution by releasing Si and Ca ions into the SBF medium. After 7 days, a porous hydroxy-carbonate apatite (HCA) layer was formed at the SBF–glass ceramic interface. The micro-nanostructured apatite–wollastonite-2 M glass ceramics with improved mechanical properties, in comparison with the parent glass, could serve as a promising platform for hard tissue regeneration.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,