Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1476653 | Journal of the European Ceramic Society | 2010 | 7 Pages |
A pressureless sintering process, using a small amount of boron carbide (≤2 wt%) as sintering aid, was developed for the densification of hafnium diboride. Hafnium diboride ceramics with high relative density were obtained when the sintering temperature changed from 2100 °C to 2350 °C. However, the sintering mechanism was varied from solid state sintering (SSS, below 2300 °C) to liquid phase sintering (LPS, above 2300 °C). Boron carbide addition improved densification by removing the oxide impurities during solid state sintering and by forming a liquid phase which was well wetting hafnium diboride grains during liquid phase sintering process. The different roles of B4C on the microstructure development and mechanical properties of the sintered ceramics were investigated.