Article ID Journal Published Year Pages File Type
1476806 Journal of the European Ceramic Society 2007 12 Pages PDF
Abstract

The penetration and corrosion resistance to copper and anode slag of six magnesia–chromite and six chrome-free refractory brick types were tested using static finger tests at a typical copper-refining temperature (1300 °C). The microstructures of the as-delivered and tested refractory types were investigated by means of electron-probe micro-analysis (EPMA) and scanning electron microscopy (SEM) techniques. The results showed that the overall wear rate of the fingers was very low, with the exception of the alumina-based brick made of fused corundum and magnesia–alumina spinel, and the magnesia-based brick made of sintered magnesia and zircon addition. In all refractory types new phases were formed as a result of slag-refractory interactions. Apart from the samples recovered from the copper zone of the latest generation of direct-bonded magnesia–chromite bricks, all the rest were completely infiltrated by copper and slag components (copper oxide, iron oxide, alumina and silica). However, the amount of infiltrated liquid in the chrome-free types was higher than in the magnesia–chromite bricks. Explanations are provided for the distinct infiltration behaviour. The results show that economically viable chrome-free refractory alternatives are still elusive for anode furnace linings.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,