Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1477026 | Journal of the European Ceramic Society | 2009 | 6 Pages |
Potassium sodium niobate (KNN) piezoelectric ceramics and KNN substituted with lithium (Li+) and antimony (Sb5+) have been synthesized by the conventional solid state sintering method. This work focuses on the phase transition in the KNN system at potassium (K+) content of approximately 0.35. Therefore, K amount was altered from 0.31 to 0.35. Additionally, Li+ and Sb5+ were used for partial substitution (up to 8% for Sb) thereby enhancing the piezoelectric and dielectric properties. However, addition of Li+ and Sb5+ also lead to a decrease in both the Curie temperature (TC) and the first order phase transition temperature (TT-O) of the ceramics. Addition of more than 4 mol% of Li+ led to the formation of extra phases. The piezoelectric properties within the given composition range were found to be optimum at (K0.34Na0.64Li0.02)(Nb0.96Sb0.04)O3. A piezoelectric charge coefficient (d33*) of 404 pm/V for this composition was obtained from unipolar strain hysteresis measurements.