Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1477107 | Journal of the European Ceramic Society | 2006 | 8 Pages |
Abstract
Fibrous zirconia/alumina composites with different composition were fabricated by piston co-extrusion. After a 3rd extrusion step and sintering at 1600 °C, crack-free composites with a fibre width of â¼50 μm were obtained for all compositions. The effect of the volume ratio of secondary phase on the mechanical properties was investigated. The Young's modulus of the composites decreased linearly with increasing the zirconia content. The fracture toughness of the composites was improved by introducing fine second phase filaments into the matrix. The maximum fracture toughness of 6.2 MPa m1/2 was attained in the 3rd co-extruded 47/53 vol% zirconia/alumina composite. The improvement in toughness was attributed to both “stress-induced” transformation of zirconia and a crack deflection mechanism due to thermal expansion mismatch between the two phases. Bending strength of the composites was almost the same as that of the monolithic alumina regardless of the composition.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Hiroyuki Miyazaki, Yu-ichi Yoshizawa, Kiyoshi Hirao,