Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1477143 | Journal of the European Ceramic Society | 2006 | 7 Pages |
Abstract
Zirconia polycrystals stabilised with 7 mol.% CaO containing 10 vol.% WC particles (Ca-PSZ/WC) were obtained by using zirconia nanopowder and WC micropowder. Cold isostatically pressed samples were pressureless sintered in argon at 1350-1950 °C. The influence of the sintering temperature and the incorporation of WC particles on the phase composition and mechanical properties of the composites were studied. Decomposition of WC due to the reaction with the zirconia matrix was found. W2C and metallic tungsten were detected as decomposition products when heat treated below 1750 °C. At higher temperatures, ZrC is formed. The mechanism of WC decomposition was discussed. The zirconia polycrystals modified with in situ formed W and W2C inclusions showed a bending strength of 417 ± 67 MPa, a fracture toughness of 5.2 ± 0.3 MPa m0.5 and a hardness of 14.6 ± 0.3 GPa.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Norbert MoskaÅa, Waldemar Pyda,