Article ID Journal Published Year Pages File Type
1477186 Journal of the European Ceramic Society 2009 6 Pages PDF
Abstract

Porous SiC ceramics were fabricated by the carbothermal reduction of polysiloxane-derived SiOC containing polymer microbeads followed by sintering. The effect of the SiC powder:polysiloxane-derived SiC (SiC:PDSiC) ratio on the porosity and flexural strength of the porous SiC ceramics were investigated. The porosity generally increased with decreasing SiC:PDSiC ratio when sintered at the same temperature. It was possible to control the porosity of porous SiC ceramics within a range of 32–64% by adjusting the sintering temperature and SiC:PDSiC ratio while keeping the sacrificial template content to 50 vol%.The flexural strengths generally decreased with increasing porosity at the same SiC:PDSiC ratio. However, a SiC:PDSiC ratio of 9:1 and a sintering temperature of 1750 °C resulted in excellent strength of 57 MPa at 50% porosity. Judicious selection of the sintering temperature and SiC:PDSiC ratio is an efficient way of controlling the porosity and strength of porous SiC ceramics.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,