Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1477324 | Journal of the European Ceramic Society | 2009 | 7 Pages |
The elasto-plastic properties and contact damage evolution of a commercial polycrystalline silicon nitride are evaluated as a function of temperature up to 1000 °C, using a recently developed method combining Hertzian indentation and FEM simulation. The results of the study are compared to existing data for other ceramic materials such as alumina and zirconia. Silicon nitride is found to exhibit an excellent combination of elasto-plastic properties in the pre-creep temperature range and good contact damage resistance. These qualities make this material ideal for high temperature applications in general, and in particular to be used in spherical indenters for the evaluation of mechanical properties of other materials at elevated temperature using the procedure applied in this work.