Article ID Journal Published Year Pages File Type
1477854 Journal of the European Ceramic Society 2007 5 Pages PDF
Abstract

Tetragonal ZrO2 polycrystalline (TZP) composites with 2 wt.% Al2O3 and co-stabilised with 1 mol% Y2O3 and (4, 6 or 8) mol% CeO2 were sintered at 1450 °C for 20 min in a single mode 2.45 GHz microwave furnace. For comparison, conventional sintering was performed in air at 1450 °C for 20 min. The starting powder mixture was obtained by a suspension coating technique using yttrium nitrate, cerium nitrate and pure m-ZrO2 nanopowder. Fully dense material grades were obtained by both sintering methods. The influence of the composition and the sintering methods on the final phase composition and microstructure were investigated by X-ray diffraction and scanning electron microscopy. Finer and more uniform microstructures were observed in the microwave sintered ceramics when compared to the conventionally sintered samples. The fracture toughness increases with decreasing stabiliser content, whereas a reverse relation was found for the Vickers hardness. Comparable toughness and hardness values were obtained for the microwave and conventionally sintered samples.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,