Article ID Journal Published Year Pages File Type
1479812 Journal of Materials Research and Technology 2016 7 Pages PDF
Abstract

The present study demonstrates an innovative single-step thermal synthesis of nano-sized lithium tetraborate dosimeter and its characterization. The optimum calcination temperature and time for the synthesis of the nanoparticles material was 750 °C and 2 h, respectively. Characterization of the samples was carried out using X-ray diffractometry (XRD), Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), and thermoluminescence (TL). FT-IR, XRD and TEM results confirmed the formation of pure nano-crystalline lithium tetraborate. The product showed a linear response over a wide range of doses from 10−1 to 1.5 × 102 Gy. Moreover, the samples illustrate non-energy dependence among a wide range energy interval from 24 keV up to 1250 keV and almost no fading during one month storage.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , ,