Article ID Journal Published Year Pages File Type
1487572 Materials Research Bulletin 2015 9 Pages PDF
Abstract

•Ag/AgI/BiOI-rectorite was prepared by twice cation-exchange process.•Ag/AgI/BiOI-rectorite photocatalyst possessed SPR and adsorption capacity.•Ag/AgI/BiOI-rectorite exhibited highly photocatalytic activity.•Trapped holes and O2− were formed active species in the photocatalytic system.

In this work, a new plasmonic photocatalyst Ag/AgI/BiOI-rectorite was prepared via a cation exchange process. The photocatalyst had been characterized by X-ray powder diffraction (XRD), Raman spectra, nitrogen sorption (BET), field-emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity, which was evaluated by degradation of rhodamine B (RhB) and bisphenol A (BPA) under visible light irradiation, was enhanced significantly by loading Ag/AgI/BiOI nanoparticles onto rectorite. The photogenerated holes and superoxide radical (O2−) were both formed as active species for the photocatalytic reactions under visible light irradiation. The existence of metallic Ag particles, which possess the surface plasmon resonance effect, acted as an indispensable role in the photocatalytic reaction.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , , ,