Article ID Journal Published Year Pages File Type
1489500 Materials Research Bulletin 2013 6 Pages PDF
Abstract

ZnO thin films were deposited onto quartz substrates by radio frequency (RF) reactive magnetron sputtering using a Zn target. The structural and optical properties of the ZnO thin films were investigated comprehensively by X-ray diffraction (XRD), ultraviolet–visible and photoluminescence (PL) measurements. The effects of the oxygen content of the total oxygen–argon mixture and sputtering voltage in the sputtering process on the structural and optical properties of the ZnO films were studied systemically. The microstructural parameters, such as the lattice constant, crystallite size, stress and strain, were also calculated and correlated with the structural and optical properties of the ZnO films. In addition, the results showed that the crystalline quality of ZnO thin films improved with increasing O2/Ar gas flow ratio from 2:8 to 8:2. XRD and PL spectroscopy revealed 800 V to be the most appropriate sputtering voltage for ZnO thin film growth. High-quality ZnO films with a good crystalline structure, tunable optical band gap as well as high transmittance could be fabricated easily by RF reactive magnetron sputtering, paving the way to obtaining cost-effective ZnO thin films transparent conducting oxides for optoelectronics applications.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► High-quality ZnO thin films were deposited at room temperature. ► Effect of O2 flow and RF sputtering voltages on properties of ZnO films were studied. ► O2/Ar ratios played a key role in controlling optical properties of ZnO films. ► Photoluminescence intensity of the ZnO films strongly depended on O2/Ar ratios. ► Crystallite size, stress and strain strongly depended on O2/Ar ratios.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,