Article ID Journal Published Year Pages File Type
1489523 Materials Research Bulletin 2013 6 Pages PDF
Abstract

A serials of g-n-HA/PLGA composites with surface-modified g-n-HA of 1%, 3%, 6%, 10% and 15% in weight were prepared by solution mixing. The isothermal crystallization, morphology and mechanical property of g-n-HA/PLGA composites were investigated by differential scanning calorimeter (DSC), scanning electron microscope (SEM) and electromechanical universal tester. The results showed that Avrami equation was suitable for describing the isothermal crystallization process in this system, and the crystallization rate of g-n-HA/PLGA composites containing more than 3 wt% g-n-HA was basically accord with the relational expression of T110 °C > T105°C > T115°C > T120°C. Moreover, at the same Tc, crystallization rate was greatly enhanced with the increasing of g-n-HA acting as nucleate. However, the addition of higher content of g-n-HA would cause more agglomeration in PLGA matrix, so that the mechanical properties of g-n-HA/PLGA composites would gradually decrease. In conclusion, the addition of higher content of g-n-HA was favorable to promote the crystallization better in g-n-HA/PLGA composites, but it could also cause more agglomeration in PLGA matrix, result in worse mechanical properties, and the addition content of 3 wt% g-n-HA to PLGA matrix was an appropriate proportion, which had the highest bending strength among these g-n-HA/PLGA composites, and it might be potential to be used in biomedical fields in future.

Graphical abstractEffect of n-HA content on the isothermal crystallization, morphology and mechanical property of n-HA/PLGA composites was studied in details. The results showed that the addition of higher content of g-n-HA was favorable to promote the crystallization better in g-n-HA/PLGA composites, but it could also cause more agglomeration in PLGA matrix, as a result of worse mechanical properties, and the addition content of 3 wt% g-n-HA to PLGA matrix was an appropriate proportion, which had the highest bending strength among these g-n-HA/PLGA composites, and it might be potential to be used in biomedical fields in future.Figure optionsDownload full-size imageDownload as PowerPoint slideHighlights► The effect of n-HA content on the n-HA/PLGA composites was studied in detail. ► Isothermal crystallization, microstructure and mechanical property were studied. ► The relation between n-HA content and properties of n-HA/PLGA composite was found. ► An appropriate proportion of n-HA in n-HA/PLGA composite was obtained.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,