Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1490035 | Materials Research Bulletin | 2012 | 7 Pages |
The MFI/MCM-41 composite material with bimetallic Fe and Co incorporation was prepared using templating method via a two-step hydrothermal crystallization procedure. The obtained products were characterized by a series of techniques including powder X-ray diffraction, N2 sorption, transmission electron microscopy, scanning electron microscope, H2 temperature programmed reduction, thermal analyses, and X-ray absorption fine structure spectroscopy of the Fe and Co K-edge. The catalytic properties of the products were investigated by residual oil hydrocracking reactions. Characterization results showed that the FeCo-MFI/MCM-41 composite simultaneously possessed two kinds of stable meso- and micro-porous structures. Iron and cobalt ions were incorporated into the silicon framework, which was confirmed by H2 temperature programmed reduction and X-ray absorption fine structure spectroscopy. This composite presented excellent activities in hydrocracking of residual oil, which was superior to the pure materials of silicate-1/MCM-41.
Graphical abstractThe formation of FeCo-MFI/MCM-41 composite is based on two steps, the first step of synthesizing the MFI-type proto-zeolite unites under hydrothermal conditions. The second step of assembling these zeolite fragment together new silica and heteroatom source on the CTAB surfactant micelle to synthesize the mesoporous product with hexagonal structure.Figure optionsDownload full-size imageDownload as PowerPoint slideHighlights► Bimetallic iron and cobalt incorporated MFI/MCM-41 composite was prepared using templating method. ► FeCo-MFI/MCM-41 composite simultaneously possessed two kinds of meso- and micro-porous structures. ► Iron and cobalt ions incorporated into the silica framework with tetrahedral coordination.