Article ID Journal Published Year Pages File Type
1490234 Materials Research Bulletin 2010 5 Pages PDF
Abstract

Fe filled carbon nanotubes were synthesized by atmospheric pressure chemical vapor deposition using a simple mixture of iron(III) acetylacetonate (Fe(acac)3) with a conventional photoresist and the effect of growth temperature (550–950 °C) on Fe filled nanotubes has been studied. Scanning electron microscopy results show that, as the growth temperature increases from 550 to 950 °C, the average diameter of the nanotubes increases while their number density decreases. High resolution transmission electron microscopy along with energy dispersive X-ray investigation shows that the nanotubes have a multi-walled structure with partial Fe filling for all growth temperatures. The graphitic nature of the nanotubes was observed via X-ray diffraction pattern. Raman analysis demonstrates that the degree of graphitization of the carbon nanotubes depends upon the growth temperature.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,