Article ID Journal Published Year Pages File Type
1490370 Materials Research Bulletin 2012 9 Pages PDF
Abstract

Cd1 − xNixSiO3 (x = 1–7 mol%) nanophosphors have been prepared for the first time by the combustion method using oxylyldihydrizide as a fuel. Powder X-ray diffraction results confirm the formation of monoclinic phase. Scanning electron micrographs show that Ni2+ influences the porosity of samples. The optical energy gap is widened with increase of Ni2+ ion dopant. The electron paramagnetic resonance spectrum of Ni2+ ions in CdSiO3 exhibits a symmetric absorption at g = 2.343 and the site symmetry around Ni2+ ions is predominantly octahedral. The number of spins participating in resonance (N) and the paramagnetic susceptibility (χ) has been evaluated. The thermoluminescence intensity is found to increase up to ∼20 min ultra-violet exposure and thereafter, decrease with further increase of ultra-violet dose. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics was estimated using glow peak shape method and the results are discussed.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► CdSiO3:Ni3+ nanophosphorus have been prepared at much lower temperatures. ► Phosphors are well characterized by PXRD, TEM, FTIR and UV–Vis spectroscopy. ► EPR, thermo and photoluminescence properties were also reported.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , ,