Article ID Journal Published Year Pages File Type
1490618 Materials Research Bulletin 2012 5 Pages PDF
Abstract

Co-incorporated ordered mesoporous carbon (Co-OMC) with magnetic frameworks has been synthesized via a one-pot self-assembly strategy. The effects of cobalt loading on carbon matrix, adsorption properties and magnetic properties of the resultant mesostructured cobalt/carbon composites were investigated by nitrogen sorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TG) and magnetometer measurements. The results show that the mesoporous composites with a high cobalt content (such as 18.0 wt%) possess an ordered and uniform mesoporous structure (5.3 nm), high surface areas (up to 687 m2/g) and high pore volumes (up to 0.54 cm3/g). Cobalt nanoparticles of size 4–9 nm are confined inside the mesopores or walls of the mesoporous carbon. These materials exhibit typical ferromagnetic characteristics. The saturation magnetization strength can be easily adjusted by changing the content of cobalt. The carbonization temperatures have significant effects on the structure and magnetic properties of Co-OMC also.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► A facile one-pot aqueous self-assembly strategy for the synthesis Co-incorporated ordered mesoporous carbons (Co-OMCs). ► Co-OMCs exhibit typical ferromagnetic characteristics. ► Saturation magnetization strength can be easily adjusted by changing the content of cobalt. ► Carbonization temperatures have significant effects on the structure and magnetic properties of Co-OMCs.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,