Article ID Journal Published Year Pages File Type
1490732 Materials Research Bulletin 2010 10 Pages PDF
Abstract

The optical properties of Bi2V1−xMnxO5.5−x {x = 0.05, 0.1, 0.15 and 0.2 at.%} thin films fabricated by pulsed laser deposition on platinized silicon substrates were studied in UV–visible spectral region (1.51–4.17 eV) using spectroscopic ellipsometry. The optical constants and thicknesses of these films have been obtained by fitting the ellipsometric data (Ψ and Δ) using a multilayer four-phase model system and a relaxed Lorentz oscillator dispersion relation. The surface roughness and film thickness obtained by spectroscopic ellipsometry were found to be consistent with the results obtained by atomic force and scanning electron microscopy. The refractive index measured at 650 nm does not show any marginal increase with Mn content. Further, the extinction coefficient does not show much decrease with increasing Mn content. An increase in optical band gap energy from 2.52 to 2.77 eV with increasing Mn content from x = 0.05 to 0.15 was attributed to the increase in oxygen ion vacancy disorder.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , ,