Article ID Journal Published Year Pages File Type
1490889 Materials Research Bulletin 2010 6 Pages PDF
Abstract

Novel nanorod-assembling hollow nanowires of cadmium sulfide/DBTU (N,N′-dibutylthiourea) nanocomposite were synthesized by reacting CdCl2 with in situ produced H2S from reaction of butylamine and carbon disulfide at molar ratio 3:3 of CS2:BuNH2 at 50 °C. This product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SEAD), energy dispersive X-ray spectroscopy (EDAX), thermogravimetric (TG), Fourier transform infrared (FTIR) and UV–vis absorption spectra. A plausible mechanism that the extending DBTU molecules in solvent of CS2 induce the formation of CdS/DBTU nanorods by coordinating with the formed CdS particles, and construct these nanorods to hollow nanowires via molecular interactions is proposed and discussed on the basis of experimental results. Photoluminescence (PL) of CdS/DBTU nanocomposite exhibits increasing emission intensity largely.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,