Article ID Journal Published Year Pages File Type
1491200 Materials Research Bulletin 2009 5 Pages PDF
Abstract

Structure transformations and proton conductivity of hydrogen zirconium phosphates with the NASICON structure, H1±XZr2−XMX(PO4)3·H2O (X = 0, 0.02 and 0.1, M = Nb, Y), were studied by X-ray powder diffraction, calorimetry, IR- and impedance spectroscopy. Substitution of zirconium by niobium leads to decrease of the lattice parameters, while yttrium doping leads to their increase. H0.9Zr1.9Nb0.1(PO4)3 structure was determined at 493 and 733 K. This phase crystallizes in rhombohedral space group R3¯c with lattice parameters a = 8.8564(5) Å, c = 22.700(1) Å at 493 K and a = 8.8470(2) Å, c = 22.7141(9) Å at 733 K. The a parameter and lattice volume were found to decrease with temperature increasing. Structure transformations upon heating are caused mainly by the decrease of the M1 site and C cavities. Ion conductivity of obtained materials was found to increase in humid atmosphere. Activation energies of conductivity were calculated. Rhombohedral–triclinic phase transition found by X-ray powder diffraction was proved by calorimetry data. According to XRD and IR spectroscopy data hydrogen bond in HZr2(PO4)3 was found to be weaker than in hydrated material.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,