Article ID Journal Published Year Pages File Type
1491547 Materials Research Bulletin 2008 11 Pages PDF
Abstract

In this study, we describe a size-controlled synthesis of selenium nanoparticles based on the reduction of selenious acid (H2SeO3) by UV-irradiated tungstosilicate acid (H4SiW12O40, TSA) solution which serves both as reducing reagent and stabilizer. The nanoparticles are characterized by ultraviolet-visible spectroscopy (UV–vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), the Raman spectra, transmission electron microscopy (TEM) and Zetasizer, respectively. The characteristic catalytic behavior of the Se nanoparticles is established by studying the decolorization of cango red in the presence of UV light. It is obvious that selenium catalyzes the reaction efficiently. The results show that the rate of dye decolorization varies linearly with the nanoparticle concentration and the rate of dye decolorization decreases with the size of the Se nanoparticles increasing.

Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,